Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163011

RESUMO

The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (∼3-6 Hz), high theta (∼6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through rhythmic gating of spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. Finally, we discuss how the peptide released by the VIP cell may alter the dynamics of plasticity to support the necessary fine timing.

2.
eNeuro ; 10(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37451868

RESUMO

Human studies employing intracerebral and transcranial perturbations suggest that the input-output properties of cortical circuits are dramatically affected during sleep in healthy subjects as well as in awake patients with multifocal and focal brain injury. In all these conditions, cortical circuits react to direct stimulation with an initial activation followed by suppression of activity (Off-period) that disrupts the build-up of sustained causal interactions typically observed in healthy wakefulness. The transition to this stereotypical response has important clinical implications, being associated with loss of consciousness or loss of functions. Here, we provide a mechanistic explanation of these findings by means of simulations of a cortical-like module endowed with activity-dependent adaptation and mean-field theory. First, we show that fundamental aspects of the local responses elicited in humans by direct cortical stimulation can be replicated by systematically varying the relationships between adaptation strength and excitation level in the network. Then, we reveal a region in the adaptation-excitation parameter space of crucial relevance for both physiological and pathologic conditions, where spontaneous activity and responses to perturbation diverge in their ability to reveal Off-periods. Finally, we substantiate through simulations of connected cortical-like modules the role of adaptation mechanisms in preventing cortical neurons from engaging in reciprocal causal interactions, as suggested by empirical studies. These modeling results provide a general theoretical framework and a mechanistic interpretation for a body of neurophysiological measurements that bears critical relevance for physiological states as well as for the assessment and rehabilitation of brain-injured patients.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Sono/fisiologia , Vigília/fisiologia
3.
Brain Topogr ; 35(1): 142-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779888

RESUMO

Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by "computational model" is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.


Assuntos
Encéfalo , Eletroencefalografia , Encéfalo/fisiologia , Simulação por Computador , Humanos , Modelos Neurológicos
4.
Sci Data ; 7(1): 127, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345974

RESUMO

Precisely localizing the sources of brain activity as recorded by EEG is a fundamental procedure and a major challenge for both research and clinical practice. Even though many methods and algorithms have been proposed, their relative advantages and limitations are still not well established. Moreover, these methods involve tuning multiple parameters, for which no principled way of selection exists yet. These uncertainties are emphasized due to the lack of ground-truth for their validation and testing. Here we present the Localize-MI dataset, which constitutes the first open dataset that comprises EEG recorded electrical activity originating from precisely known locations inside the brain of living humans. High-density EEG was recorded as single-pulse biphasic currents were delivered at intensities ranging from 0.1 to 5 mA through stereotactically implanted electrodes in diverse brain regions during pre-surgical evaluation of patients with drug-resistant epilepsy. The uses of this dataset range from the estimation of in vivo tissue conductivity to the development, validation and testing of forward and inverse solution methods.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda , Eletroencefalografia , Algoritmos , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos , Eletrodos Implantados , Humanos
5.
Neural Comput ; 30(5): 1258-1295, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29566351

RESUMO

Despite their biological plausibility, neural network models with asymmetric weights are rarely solved analytically, and closed-form solutions are available only in some limiting cases or in some mean-field approximations. We found exact analytical solutions of an asymmetric spin model of neural networks with arbitrary size without resorting to any approximation, and we comprehensively studied its dynamical and statistical properties. The network had discrete time evolution equations and binary firing rates, and it could be driven by noise with any distribution. We found analytical expressions of the conditional and stationary joint probability distributions of the membrane potentials and the firing rates. By manipulating the conditional probability distribution of the firing rates, we extend to stochastic networks the associating learning rule previously introduced by Personnaz and coworkers. The new learning rule allowed the safe storage, under the presence of noise, of point and cyclic attractors, with useful implications for content-addressable memories. Furthermore, we studied the bifurcation structure of the network dynamics in the zero-noise limit. We analytically derived examples of the codimension 1 and codimension 2 bifurcation diagrams of the network, which describe how the neuronal dynamics changes with the external stimuli. This showed that the network may undergo transitions among multistable regimes, oscillatory behavior elicited by asymmetric synaptic connections, and various forms of spontaneous symmetry breaking. We also calculated analytically groupwise correlations of neural activity in the network in the stationary regime. This revealed neuronal regimes where, statistically, the membrane potentials and the firing rates are either synchronous or asynchronous. Our results are valid for networks with any number of neurons, although our equations can be realistically solved only for small networks. For completeness, we also derived the network equations in the thermodynamic limit of infinite network size and we analytically studied their local bifurcations. All the analytical results were extensively validated by numerical simulations.

6.
J Comput Neurosci ; 44(1): 25-43, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29124505

RESUMO

The study of correlations in neural circuits of different size, from the small size of cortical microcolumns to the large-scale organization of distributed networks studied with functional imaging, is a topic of central importance to systems neuroscience. However, a theory that explains how the parameters of mesoscopic networks composed of a few tens of neurons affect the underlying correlation structure is still missing. Here we consider a theory that can be applied to networks of arbitrary size with multiple populations of homogeneous fully-connected neurons, and we focus its analysis to a case of two populations of small size. We combine the analysis of local bifurcations of the dynamics of these networks with the analytical calculation of their cross-correlations. We study the correlation structure in different regimes, showing that a variation of the external stimuli causes the network to switch from asynchronous states, characterized by weak correlation and low variability, to synchronous states characterized by strong correlations and wide temporal fluctuations. We show that asynchronous states are generated by strong stimuli, while synchronous states occur through critical slowing down when the stimulus moves the network close to a local bifurcation. In particular, strongly positive correlations occur at the saddle-node and Andronov-Hopf bifurcations of the network, while strongly negative correlations occur when the network undergoes a spontaneous symmetry-breaking at the branching-point bifurcations. These results show how the correlation structure of firing-rate network models is strongly modulated by the external stimuli, even keeping the anatomical connections fixed. These results also suggest an effective mechanism through which biological networks may dynamically modulate the encoding and integration of sensory information.


Assuntos
Correlação de Dados , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Humanos , Redes Neurais de Computação , Processos Estocásticos , Sinapses/fisiologia , Fatores de Tempo
7.
PLoS Comput Biol ; 12(8): e1004992, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27494737

RESUMO

Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Biologia Computacional
8.
Front Comput Neurosci ; 10: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148027

RESUMO

The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system) and its continuous counterpart (PDE system) obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables. Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least 270 times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround, and time-windowing.

9.
Math Biosci Eng ; 11(2): 203-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24245715

RESUMO

The aim of this work is to investigate the dynamics of a neural network, in which neurons, individually described by the FitzHugh-Nagumo model, are coupled by a generalized diffusive term. The formulation we are going to exploit is based on the general framework of graph theory. With the aim of defining the connection structure among the excitable elements, the discrete Laplacian matrix plays a fundamental role. In fact, it allows us to model the instantaneous propagation of signals between neurons, which need not be physically close to each other. This approach enables us to address three fundamental issues. Firstly, each neuron is described using the well-known FitzHugh-Nagumo model which might allow to differentiate their individual behaviour. Furthermore, exploiting the Laplacian matrix, a well defined connection structure is formalized. Finally, random networks and an ensemble of excitatory and inhibitory synapses are considered. Several simulations are performed to graphically present how dynamics within a network evolve. Thanks to an appropriate initial stimulus a wave is created: it propagates in a self-sustained way through the whole set of neurons. A novel graphical representation of the dynamics is shown.


Assuntos
Rede Nervosa , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Simulação por Computador , Humanos , Rede Nervosa/fisiologia
10.
Science ; 296(5570): 1103-6, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-12004125

RESUMO

Light-powered molecular machines are conjectured to be essential constituents of future nanoscale devices. As a model for such systems, we have synthesized a polymer of bistable photosensitive azobenzenes. Individual polymers were investigated by single-molecule force spectroscopy in combination with optical excitation in total internal reflection. We were able to optically lengthen and contract individual polymers by switching the azo groups between their trans and cis configurations. The polymer was found to contract against an external force acting along the polymer backbone, thus delivering mechanical work. As a proof of principle, the polymer was operated in a periodic mode, demonstrating for the first time optomechanical energy conversion in a single-molecule device.


Assuntos
Compostos Azo/química , Luz , Peptídeos/química , Fenômenos Químicos , Físico-Química , Dimetil Sulfóxido , Mecânica , Microscopia de Força Atômica , Conformação Molecular , Nanotecnologia , Óptica e Fotônica , Fotoquímica , Polímeros , Conformação Proteica , Software , Análise Espectral , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...